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Abstract

GKZ-hypergeometric functions are a very general extension of hy-
pergeometric functions. This thesis contains a nearly-complete analysis
of the algebraicity of the solutions to a GKZ-system (see definition 2.1)
where α is rational and A is either a rectangle, a cuboid or a hyper-
cuboid of arbitrary dimension. It turns out that there are very few cases
in which the system has algebraic solutions: see section 4.4 for details.
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1 Introduction

Hypergeometric functions have a long history: Gauss (and later Riemann and
Kummer) already studied what is now known as the “classical” hypergeometric
function, 2F1

(
α β
γ |z

)
=
∑∞

n=0
(α)n(β)n

n!(γ)n
zn, where (α)n = α(α+1) . . . (α+n−1)

is the Pochhammer symbol. An important motivation for studying this function
is that it is related to many well-known functions, including, but not limited
to
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which means that results obtained for this hypergeometric function are poten-
tially applicable in a wide variety of cases.

In 1873, Hermann Schwarz (probably best known for the Cauchy-Schwarz
inequality) provided a list of all (α, β, γ) ∈ Q3 for which the classical hyperge-
ometric function is algebraic (in z). Quite a few people have extended this list
to various generalizations of 2F1

(
α β
γ |z

)
in the last decades; my supervisor

Frits Beukers, in cooperation with Gert Heckman, extended this list to gen-
eral hypergeometric functions of one variable (i.e. pFp−1

(
α1 α2 ... αp

β1 β2 ... βp−1
|z
)

=∑∞
n=0

(α1)n(α2)n...(αp)n

n!(β1)n(β2)n...(βp−1)n
zn) in [BH89].

However, the classical hypergeometric function can be extended in other
ways as well, and analogous lists have been created for many of these exten-
sions. In the 1990’s, Gel’fand, Kapranov and Zelevinsky proposed the very
general class of A-hypergeometric functions (now commonly called “GKZ-
hypergeometric functions” in their honour; see definition 2.1) Although this
concept is rather abstract, it includes the above pFp−1 as well as many of the
other extensions as special cases. Obviously, it would be tremendously useful
to have at least a partial list of parameters for which this far more general
function is algebraic. A research project to this end has been started under
grant OND1331860 from the Netherlands Organization for Scientific Research
(NWO).

This Bachelor’s thesis is an attempt to provide, if not a building block, then
at least a couple of examples for those undertaking this research. In particular,
I have some hope that the idea behind theorem 3.6 may be more generally
applicable, and I have some hope that the results obtained in this thesis may
be a useful “reality check” for the lofty proofs likely to be required for the
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1. Introduction

more-general theorems this project will require.

Additionally, with a simple linear transformation (which does not invali-
date theorem 2.4), the Horn series G3 can be transformed into the configura-
tion (r, n1) = (2, 3) (in terms of definition 3.1). Thus, this thesis also proves
the conjecture made by Beukers in [Beu07] that there are but a few choices of
parameters such that the Horn series G3 is algebraic (see section 4.4 for the fi-
nal results, which imply this one; the proof consists of almost the entire thesis).

This thesis follows a rather simple plan of attack: we uses theorem 2.4
extensively to reduce this difficult analytic problem to a less-difficult combi-
natorial problem, and then repeatedly prove something conclusive for a wide
range of parameters that were not handled by a previous argument. Thus,
the progression from more to less general is a continuing theme in this thesis.
However, in quite a few of the cases, the complexity is inherent, not acciden-
tal: for instance, a significant proportion of the possible values for parameters
“missed” by proofs of non-algebraicity like corollary 3.8 and lemma 3.17 do
actually lead to algebraic solutions.
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2 Preliminary theory

By and large, this thesis will skip the more analytic parts and restrict itself to
the combinatorial arguments made possible by theorem 2.4. However, we do
need a couple of definitions.

Definition 2.1. Let A = {a1, a2, . . . , aN} be a finite subset of Zr such that
the Z-span of A is Zr and such that there is a linear form h such that h(a1) =
h(a2) = . . . = h(aN ) = 1. Let α = (α1, α2, . . . , αr) ∈ Rr.

Let L = {I = (I1, I2, . . . , IN ) ∈ ZN |
∑N

i=1 Iiai = 0}. Let v1, . . . , vN be
variables. For all I ∈ L and all linear forms m, define

�I =
∏
Ii>0

(
∂

∂vi

)Ii

−
∏
Ii<0

(
∂

∂vi

)−Ii

Zm =

(
N∑

i=1

m(ai)vi
∂

∂vi

)
+ m(α)

Then the GKZ-system associated to A and α consists of the following equations:

�Iϕ = 0 for each I ∈ L

Zmϕ = 0 for each linear form m

Again, we will restrict ourselves to combinatorial arguments, which will be
far more elementary than the above definition suggests. We do frequently need
the following definitions, but these are hardly complicated. Note that there
cannot be more apex points than the number that is defined as “maximal”
below, as a trivial consequence of theorem 3.6, so the name is at least somewhat
justified.

Definition 2.2. Let A = {a1, a2, . . . , an} be a finite set of points in Rr. Then
the positive real cone spanned by A is the set C(A) = {

∑n
i=1 λiai|∀i : λi ∈

R≥0}.

Definition 2.3. A point p ∈ Rr is an apex point if it is in K(α, A) = C(A) ∩
(α + Zr) and there is no q ∈ K(α,A) \ {p} such that p − q ∈ C(A). If the
number of apex points is equal to the simplex volume1 of the convex hull of A,
we call it maximal.

Finally, let us formulate the main theorem we will base our analysis on.
The interested reader is referred to [Beu07] for any and all details: we will
assume this as a given.

1The usual volume, corrected such that the fundamental simplex has volume 1 – that is,
the simplex volume of an r-dimensional object is r! times the normal volume.
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2. Preliminary theory

Theorem 2.4. Consider the GKZ-system associated to A ⊂ Zr and α ∈ Qr.
Suppose that every element of K(α, A) can be written as a linear combination
of the elements of A with non-negative integer coefficients (normality assump-
tion). Furthermore, suppose that α+Zr has no points on the boundary of C(A)
(the GKZ-system is irreducible).

Then the GKZ-system has a solution space consisting of algebraic functions
exactly if the number of apex points in K(kα, A) is equal to the volume of the
convex hull of A for all integers k such that gcd(k, N) = 1, where N is the
smallest integer such that Nα ∈ Zr.

Remark 2.5. Under the conditions of theorem 2.4, the GKZ-system has an
algebraic solution exactly if the solution space consists of algebraic functions;
that is, it either has no algebraic solutions, or every solution is algebraic.
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3 The general case

For the rest of this thesis, we will use the following definitions and symbols:

Definition 3.1. Let r be an integer greater than 1 and let n1, n2, . . . , nr−1 be
positive integers. Let A = {a ∈ Zr|∀i ∈ {1, 2, . . . , r−1} : 0 ≤ ai ≤ ni ∧ar = 1}
be an r − 1-dimensional (hyper)cuboid. Finally, let α ∈ Qr be such that the
GKZ-system of equations associated to A and α is irreducible.

The above definition appears fairly general, but we will prove that there
are but a few specific values of r and α such that the associated system has
a solution space consisting entirely of algebraic functions. We will start by
finding bounds on the number and location of apex points, notably theorem
3.6; we will then utilize those bounds, and occasionally theorem 2.4 directly,
to obtain our results.

The following definition and lemma, presented graphically in figure 3.1, will
prove tremendously useful. Note that the conclusion, presented in section 4.4,
is formulated using only the previous chapter and definitions 3.1 and 3.2, so a
reader who has come this far should be able to understand it.

Definition 3.2. We will denote the fractional part of x ∈ R as {x} = x−⌊x⌋.
For x ∈ Rr, we define {x} componentwise, i.e. {x} = ({x1}, {x2}, . . . , {xr}).

Lemma 3.3. A point p ∈ α + Zr is an apex point exactly if ∀j ∈ {1, 2, . . . , r−
1} : 0 ≤ pj ≤ njpr and ∃i ∈ {1, 2, . . . , r − 1} : ni(pr − 1) < {pi}.

Proof. Note that C(A) is a cone spanned by the (hyper)cuboid A with its bot-
tom at 0. Thus, a point p ∈ Qr is in C(A) exactly if ∀j ∈ {1, 2, . . . , r − 1} :
0 ≤ pj ≤ njpr.

A point p ∈ (α + Zr) ∩ C(A) is an apex point exactly if there is no
q ∈ ((α + Zr) ∩ C(A)) \ {p} such that p − q ∈ C(A). Equivalently, a point
p ∈ (α+Zr)∩C(A) is an apex point if there is no c = p−q ∈ (Zr ∩C(A))\{0}
such that p − c ∈ C(A).

Suppose that p ∈ (α+Zr)∩C(A) is an apex point. For each j ∈ {1, 2, . . . , r−
1}, let cj = min(⌊pj⌋, nj), and note c = (c1, c2, . . . , cr−1, 1) ∈ (Zr \{0})∩C(A).
Note p − c /∈ C(A) by assumption. But ∀j ∈ {1, 2, . . . , r − 1} : pj − cj ≥ 0,

Figure 3.1: Per lemma 3.3, a point p ∈ (α+Zr)∩C(A) is an apex point exactly
if the projection onto the plane spanned by ei and er is in the above area for
some i ∈ {1, 2, . . . , r − 1}. (This presents the cases n = 3 and n = 6.)
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3. The general case

so ∃i ∈ {1, 2, . . . , r − 1} : pi − ci > ni(pr − cr) = ni(pr − 1). If ci = ni,
pi − ni > nipr − ni so pi > nipr; but then p /∈ C(A). Therefore ci = ⌊pi⌋ and
{pi} = pi − ⌊pi⌋ > ni(pr − 1).

Conversely, suppose that p satisfies the above equations, and that c ∈ (Zr ∩
C(A)) \ {0}. Choose an i ∈ {1, 2, . . . , r − 1} such that {pi} > ni(pr − 1); then
either pi − ci < 0 (and p − c /∈ C(A)) or ⌊pi⌋ ≥ ci, and therefore

pi − ci = {pi} + ⌊pi⌋ − ci

> ni(pr − 1) + ⌊pi⌋ − ci

= ni(pr − cr) + ni(cr − 1) + ⌊pi⌋ − ci

≥ ni(pr − cr)

which also implies p − c /∈ C(A).

This description of apex points is much more convenient than definition 2.3.
We will use it to obtain relations between apex points.

Remark 3.4. Let p and q be apex points. Then p and q are in α + Zr, so
{p} = {q} = {α}.

Corollary 3.5. Let p and q be apex points. Then 0 ≤ pr = qr < 2.

Proof. Let p and q be apex points. There is an i ∈ {1, 2, . . . , r − 1} such that
ni(pr −1) < {pi}, so pr < {pi}

ni
+1 < 2. So 0 ≤ pr < 2, and likewise 0 ≤ qr < 2.

Suppose qr ̸= pr; we may assume, without loss of generality, that qr = pr−1.
Then 0 ≤ qi ≤ niqr = ni(pr − 1) < {pi} = {qi} and therefore 0 ≤ qi < {qi},
which is clearly not true. So 0 ≤ pr = qr < 2.

3.1 The r-dimensional case (for r > 3)

We can now count the number of apex points in various configurations.

Theorem 3.6. Suppose that p ∈ α + Zr is an apex point. Let I = {i ∈
{1, 2, . . . , r−1}|ni(pr −1) < {pi}}, Ic = {1, 2, . . . , r−1}\I. Then there are no
more than

∏
i∈I ni

∏
j∈Ic(⌊njpr⌋ + 1) apex points, and this bound is attained

exactly if ∀i ∈ I : ni(pr−1) < {pi} ≤ ni(pr−1)+1 and ∀j ∈ Ic : {pj} ≤ {njpr}.

Proof. By lemma 3.3, remark 3.4 and corollary 3.5, all apex points are of the
form {p} + c, where c ∈ Zr−1

≥0 × {0}.

For each j ∈ Ic we require 0 ≤ {pj} + cj ≤ njpr. So if we project all apex
points onto the plane spanned by the standard basis vectors ej and er, we ob-
tain at most ⌊njpr⌋ + 1 points; equivalently, there are at most ⌊njpr⌋ + 1
integers cj satisfying this inequality. Note that for each c ∈ Z such that
0 ≤ {pj} + cj ≤ njpr, there actually is an apex point that is projected to
{pj}+cj , for instance {p}+cjej+⌊pr⌋er. There are exactly ⌊njpr⌋+1 projected
points/integers if and only if {pj}+⌊njpr⌋ ≤ njpr, i.e. exactly if {pj} ≤ {njpr}.

For each i ∈ I we require 0 ≤ {pi} + ci ≤ nipr < {pi} + ni. So there are
at most ni integers satisfying this inequality (or ni points in the image of the
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3.2. The two-dimensional case

projection of the apex points, as above). This second bound is attained exactly
if

{pi} + ni − 1 ≤ nipr < {pi} + ni

{pi} − 1 ≤ ni(pr − 1) < {pi}
ni(pr − 1) < {pi} ≤ ni(pr − 1) + 1

Note that {p}+c is an apex point if and only if it satisfies all the conditions
imposed by lemma 3.3, i.e. if each {pi} + ci satisfies the conditions imposed
above. Therefore, the number of c – and hence the number of apex points –
that satisfy all conditions is exactly the product of the number of cj that satisfy
their respective conditions, i.e.

∏
i∈I ni

∏
j∈Ic(⌊njpr⌋ + 1).

The convex hull of A is obviously an (r − 1)-dimensional orthotope. Recall
our definition of the simplex volume (see definition 2.3), which states that the
simplex volume is n! times the normal volume. Therefore,

Remark 3.7. The simplex volume of the convex hull of A is (r − 1)!
∏r−1

j=1 nj .

Using the above remark and lemma, we can find a result that allows us to
exclude most instances of A from further consideration.

Corollary 3.8. If r > 3, there are no algebraic solutions.

Proof. Recall corollary 3.5, which gives us that pr < 2. Also note that I ̸= ∅.
Thus, the number of apex points is no larger than

∏
i∈I ni

∏
j∈Ic(⌊njpr⌋+1) ≤

2r−2
∏r−1

j=1 nj , which for r > 3 is smaller than the simplex volume of the convex
hull, (r − 1)!

∏r−1
j=1 nj (see remark 3.7).

3.2 The two-dimensional case

The above Corollary 3.8 handles all high-dimensional cases, but leaves the cases
where r = 2 or r = 3 unresolved. It will turn out that these are very similar.
We will denote α = (α1, αr) respectively α = (α1, α2, αr), and {αi} = βi

γi
for

each applicable i, where βi and γi are coprime nonnegative integers. We will
also abbreviate n1 to simply n.

We will start with some dimension-specific analysis, after which most of the
theory will apply to each case.

Per theorem 3.6, the number of apex points is maximal exactly if n(pr−1) <
{p1} ≤ n(pr − 1) + 1. Thus, the number of apex points is maximal exactly if
there is an apex point in the area marked in figure 3.2. We can free ourselves
from the dependence on p by only considering fractional parts:

Corollary 3.9. The number of apex points is maximal exactly if

{α1}
n

> {αr} or
{α1} + n − 1

n
≤ {αr}

Proof. Per theorem 3.6, the number of apex points is maximal (i.e. n) exactly if
n(pr−1) < {p1} ≤ n(pr−1)+1. Note that for any point p in α+Zr, {p} = {α}.

7



3. The general case

Figure 3.2: Per corollary 3.9, the number of apex points is maximal exactly
if there is an apex point in the inner area. (Like figure 3.1, this presents the
cases n = 3 and n = 6.)

Figure 3.3: Per corollary 3.9, the number of apex points is maximal exactly if
{α} is in this area. This presents the cases n = 3 and n = 6.

Now suppose that {α1}
n > {αr}. Let p = ({α1}, {αr} + 1). Note 0 ≤ p1 <

1 ≤ n(pr − 1) + 1, and {p1} = p1 > n(pr − 1), so p is indeed an apex point
(lemma 3.3). Finally, note n(pr − 1) + 1 = n{αr} + 1 ≥ 1 > {α1} = {p1}. So
n(pr − 1) < {p1} ≤ n(pr − 1) + 1.

Likewise, suppose that {α1}+n−1
n ≤ {αr}. Let p = ({α1}, {αr}). Note

0 ≤ p1 ≤ pr, and {p1} ≥ 0 > n(pr − 1); additionally, {p1} ≤ n(pr − 1) + 1.
Therefore, n(pr − 1) < {p1} ≤ n(pr − 1) + 1.

Finally, assume that we have a p such that n(pr−1) < {p1} ≤ n(pr−1)+1.
Note 0 ≤ pr < 2 (corollary 3.5). If pr ≥ 1, n{pr} = n(pr − 1) < {p1},
so {p1}

n > {pr}. Otherwise, {p1} ≤ n(pr − 1) + 1 = n({pr} − 1) + 1, so
{p1}+n−1

n ≤ {pr}.

The following statement is pretty obvious, but nonetheless very useful (cf.
remark 3.14):

Remark 3.10. The number of apex points is not maximal if 1
n ≤ {αr} < n−1

n .

3.3 The three-dimensional case

Let us now turn our attention to the three-dimensional case. As in the two-
dimensional case, theorem 3.6 can be greatly simplified.

Corollary 3.11. The number of apex points is maximal exactly if there is an
i ∈ {1, 2}, j = 3 − i, such that 1 + {αj}−1

nj
≤ {αr} < {αi}

ni
.

Proof. Note that there is always at least one apex point; so let p be an ar-
bitrary apex point. Note {p} = {α}. The number of apex points is maxi-
mal, i.e. equal to 2n1n2, exactly if the bound

∏
i∈I ni

∏
j∈Ic(⌊njpr⌋ + 1) from

theorem 3.6 equals 2n1n2 and is attained (note that it cannot be larger, as
pr < {pi}

ni
+ 1 < 2).
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3.3. The three-dimensional case

Note that p is an apex point, so the conditions in lemma 3.3 hold. This
leads to equations (3.1a), (3.1b) and (3.1c).

If nj(pr − 1) < {pj}, i.e. j ∈ I,
∏

i∈I ni

∏
j∈Ic(⌊njpr⌋+1) = n1n2 < 2n1n2,

so there are no algebraic solutions unless I = {i}. So j ∈ Ic; this is equiva-
lent to equation (3.1d). For the number of apex points to be maximal, it is
necessary that ni(⌊njpr⌋ + 1) = 2n1n2, i.e. ⌊njpr⌋ = 2nj − 1. This is the case
exactly if pr ≥ 2 − 1

nj
, i.e. if equation (3.1e) holds.

Obviously, the bound mentioned in theorem 3.6 must actually be attained:
this leads to equations (3.1f) and (3.1g). Therefore, the number of apex points
is maximal (in the sense of theorem 2.4) exactly if all of the following equations
hold:

0 ≤ pi ≤ nipr (3.1a)
0 ≤ pj ≤ njpr (3.1b)

ni(pr − 1) < {pi} (3.1c)
{pj} ≤ nj(pr − 1) (3.1d)

2 − 1
nj

≤ pr (3.1e)

ni(pr − 1) < {pi} ≤ ni(pr − 1) + 1 (3.1f)
{pj} ≤ {njpr} (3.1g)

At first glance, this is a fairly impressive array of equations. However, it can
be greatly simplified. If we combine (3.1e) and (3.1c), we find 1 ≤ 2− 1

nj
≤ pr <

1+ {pi}
ni

< 2. So we can substitute {njpr} = njpr−⌊njpr⌋ = njpr−(2nj −1) =
1 − nj(2 − pr) in equation (3.1g), obtaining

0 ≤ {pj} ≤ {njpr} = 1 − nj(2 − pr) (3.2)

In particular, this equation implies 0 ≤ 1 − nj(2 − pr), so 2 − 1
nj

≤ pr, which
is equation (3.1e). Additionally, {pj} ≤ 1− nj(2− pr) = 1− nj + nj(pr − 1) ≤
nj(pr−1), which is equation (3.1d). Also note ni(pr−1)+1 > ni(1− 1

nj
)+1 ≥

1 > {pi}; thus, (3.1c) and (3.2) imply (3.1f).

Thus, the whole system of equations is equivalent to (3.1a), (3.1b), (3.1c)
and (3.2). In other words, p ∈ C(A) and 2 + {pj}−1

nj
≤ pr < {pi}

ni
+ 1. Finally,

note that 1 ≤ pr < 2; so {αr} = {pr} = pr − 1 which leads to the above
inequality.

This may appear somewhat dissimilar to corollary 3.9, but it actually isn’t.
First consider the following corollary:

Corollary 3.12. If n1 ≥ 2 and n2 ≥ 2, there are no algebraic solutions.

Proof. Suppose n1 ≥ 2 and n2 ≥ 2. Then the inequality in corollary 3.11
becomes

1
2

< 1 − 1 − {αj}
nj

≤ {αr} <
{αi}
ni

<
1
2
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3. The general case

Figure 3.4: As noted in remark 3.14, the number of apex points is not maximal
if {α} is in the inner area. This presents the cases n = 6, n = 3 and n = 2,
illustrating why our proof doesn’t yield any results in the last case.

which obviously has no solutions.

Given the above, we may assume without loss of generality that n2 = 1.
Recall that we defined n = n1. We find the following corollary, which is an
obvious analogue of remark 3.10:

Corollary 3.13. The number of apex points is not maximal if 1
n ≤ {αr} <

n−1
n .

Proof. Let us consider the inequality in corollary 3.11. Suppose j = 1. Ob-
viously, n−1

n ≤ 1 − 1−{α1}
n ≤ {αr} < {α2}, which obviously fails to hold if

{αr} < n−1
n . Otherwise, j = 2, and {α1} ≤ {αr} < {α2}

n < 1
n , which obviously

fails to hold if {αr} ≥ 1
n .

3.4 Eliminating most possible values of αr

Let us, for a moment, assume the conditions of theorem 2.4 are satisfied. We
will use the intuition provided by figure 3.4: if kαr ≈ 1

2 , it must satisfy remark
3.10 or corollary 3.13, as appropriate for the dimension.

Remark 3.14. The number of apex points is not maximal if 1
n ≤ {αr} < n−1

n .

Additionally, note that there is nothing to prove for (r, n) = (2, 1): any
choice of α leads to exactly one apex point, which is the maximum number.
It is rather unfortunate, if perhaps unsurprising1, that the following argument
will not work for (r, n) = (3, 1) or n = 2. So, in the following, we will always
assume n ≥ 3, and try to find an appropriate k for each α. We will leave
troublesome values for α for later consideration.

The following lemmas take care of a lot of the fiddling that would otherwise
be required to find appropriate k for use with remark 3.14 (and similar bounds.)

Lemma 3.15. Let a, b and k be nonzero integers such that k is coprime with
a. Then there is an integer l, coprime with ab, such that l ≡ k mod a.

Proof. Let c be the smallest positive integer such that c|b and gcd(a, b
c ) = 1.

There is an integer a′ such that aa′ ≡ 1 mod b
c . Define l = k − (k − 1)aa′.

Then l ≡ 1 mod b
c and l ≡ k mod a.

1This argument is mostly concerned with proving that there are no algebraic solutions:
however, experimental results and (others’) theoretical results suggest that there are a lot of
configurations leading to algebraic solutions in those cases.
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3.4. Eliminating most possible values of αr

It remains to be shown that l is coprime with ab. Let p be an arbitrary
prime dividing ab. Note that p divides either a or b

c . If p divides a, l =
k − (k − 1)aa′ ≡ k mod p. Since k is coprime with a, it is also coprime with
p. If p divides b

c , l is coprime with p, since l is coprime with a b
c .

Lemma 3.16. Let a ∈ R< 1
2

be a real number. Let b and c be coprime integers,
and suppose c ≥ max(3, d

1−2a ), where d = 1 if c is odd, d = 2 if c ≡ 0 mod 4,
and d = 4 if c ≡ 2 mod 4. Then there is an integer k, coprime with c, such
that a ≤ {k b

c} < 1
2 , with equality exactly if c = d

1−2a .

Proof. Since b and c are coprime, there is an integer b′ such that bb′ ≡ 1
mod c. Let k = b′ c−d

2 ; note k ∈ Z. Obviously, b′ is coprime with c, and
therefore gcd(k, c)| gcd(b′, c) gcd( c−d

2 , c) = gcd( c−d
2 , c). If c is odd, gcd( c−d

2 , c)|
gcd(c − 1, c) = 1; if c ≡ 0 mod 4, gcd( c−d

2 , c) = gcd( c
2 − 1, c) = 1; and finally,

if c ≡ 2 mod 4, gcd( c−d
2 , c) = gcd( c

2 − 2, c) = 1. Thus, gcd(k, c) = 1.
Additionally, {k b

c} = {b′ c−d
2

b
c} = { c−d

2c }. Note that c ≥ d for all c ≥ 3, so
{k b

c} = { c−d
2c } = c−d

2c < 1
2 . Finally, a ≤ c−d

2c exactly if c ≥ d
1−2a , where we have

equality on the left side if and only if we have equality on the right side.

With these tools in hand, we can easily restrict the range of parameters
that may result in algebraic solutions.

Lemma 3.17. Suppose that (γr, n) ̸∈ {(4, 3), (6, 3), (6, 4), (6, 5), (10, 3)}. Then
there are no algebraic solutions.

Proof. We simply combine all statements above. Per remark 3.14, if 1
n ≤

{αr} < n−1
n , there are no algebraic solutions. Per lemma 3.16, we can find a k

coprime with γr such that 1
n ≤ {kαr} < 1

2 ≤ n−1
n , provided γr ≥ max(3, dn

n−2 ),
where d is as defined in the lemma. This turns out to be the case except if γr = 2
(but in that case, simply consider remark 3.14 again) or (γr, n) ∈ {(4, 3), (6, 3),
(6, 4), (6, 5), (10, 3)}.

Per lemma 3.15, there is an integer l, coprime with
∏r

i=1 γi, such that
1
n ≤ {lαr} < n−1

n .
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4 Exceptions

We will now consider the cases left unresolved by lemma 3.17, i.e. (γr, n) ∈
{(4, 3), (6, 3), (6, 4), (6, 5), (10, 3)}. This is only a handful, but they do require
special attention. Let us first consider some corner cases: if {α1} = 0, or if
r = 3 and {α2} = 0, there are no algebraic solutions. This is immediately
obvious when considering the following remark and remark 3.14.

Remark 4.1. All solutions are algebraic for α if and only if all solutions are
algebraic for −α.

Proof. All solutions are algebraic for α if and only if the number of apex points
is maximal for each {kα}, where k is coprime with γ1γ2γr. Thus, all solutions
are algebraic for α if and only if the number of apex points is maximal for
each {−kα}, where k is coprime with γ1γ2γr; that is, exactly if all solutions
are algebraic for −α.

Now let us turn our attention to the special cases.

4.1 Results for (γr, n) ∈ {(4, 3), (6, 4), (6, 5)}

If α1 ̸= 0 and (γr, n) ∈ {(4, 3), (6, 4), (6, 5)}, we can re-use the argument pre-
sented in section 3.4 to restrict γ1 as well as γr. (It would be very convenient if
this argument worked for the other two cases as well; unfortunately, I am not
aware of any bounds on γ1 that can easily be used with lemma 3.16.)

Lemma 4.2. Let (γr, n) ∈ {(4, 3), (6, 4), (6, 5)}. Then all solutions are alge-
braic exactly if r = 2 and ({α1}, {αr}, n) ∈ {( 1

6 , 5
6 , 4), ( 5

6 , 1
6 , 4)}.

Proof. For r = 2, the number of apex points for {kα} is not maximal exactly if
n({kαr}− 1) + 1 < {kα1} ≤ n{kαr}, which is equivalent to either {kα1} ≤ n

γr

or {kα1} > γr−n
γr

.

For r = 3, the number of apex points for {kα} is not maximal exactly if
∀i ∈ {1, 2}, j = 3 − i : 1 + {kαj}−1

nj
> {kαr} ∨ {kαr} ≥ {kαi}

ni
, which is at

least the case if 1 + {kα1}−1
n ≤ {kαr} < {kαi}

n . The last part is equivalent
to n{kαr} < {kα1} ≤ 1 + n({kαr} − 1); considering the cases {kαr} = 1

γr

and {kαr} = γr−1
γr

, as above, leads us to conclude that there are no algebraic
solutions if γr−n

γr
< {α1} ≤ n

γr
.

Provided γ1 > 4γr

2n−γr
, we can now apply lemmas 3.16 and 3.15 to obtain an

integer l, coprime with
∏r

i=1 γi, such that γr−n
γr

< {kα1} < 1
2 < n

γr
.

At this point, a computer can be used to solve the exceptions (i.e. the
case γ1 ≤ 4γr

2n−γr
.) Appendix A contains the code and output. We will

only mention the end result here: all solutions are algebraic if r = 2 and

13



4. Exceptions

({α1}, {αr}, n) ∈ {( 1
6 , 5

6 , 4), ( 5
6 , 1

6 , 4)}, and if r = 2 there are no other algebraic
solutions.

If r = 3, there are no algebraic solutions unless ({α1}, {αr}, n) ∈ {( 1
6 , 5

6 , 4),
( 5
6 , 1

6 , 4)}, as above (note that the requirements of corollary 3.11 include those
of corollary 3.9; therefore, if (α1, α2, αr) leads to algebraic solutions, so does
(α1, αr)). We can simply fill in both possible values for (α1, αr) into the
inequality in corollary 3.11 to find that (depending on k) we require either
{kα2} ≤ 1

6 < 5
24 or 19

24 ≤ 5
6 < {α2}; so in any case, if 1

6 < {kα2} ≤ 5
6 , there are

no algebraic solutions. If we again apply the lemmas 3.16 and 3.15, we find
that there are no algebraic solutions if γ2 > 6. However, for any α2, it’s clearly
possible to find a k such that {kα2} > 1

2 . (We remarked that there are no
algebraic solutions if α2 = 0 back in section 3.4.) However, it’s equally clear
that we are not going to find any k such that {kα2} > 5

6 ; therefore, there are
no algebraic solutions if r = 3.

4.2 Results for (γr, n) = (6, 3)

The last section does not handle (γr, n) ∈ {(6, 3), (10, 3)}. We will consider
(γr, n) = (6, 3) now, and handle (γr, n) = (10, 3) in the next section (using
essentially the same proof). This requires the following elementary lemma.

Lemma 4.3. For all nonzero integers a, b, m and n such that gcd(m,n)|a− b,
there is an integer x such that x ≡ a mod m and x ≡ b mod n.

Proof. Let c be the integer defined by a−b = c gcd(m,n). Using the Euclidean
algorithm, we can find integers d and e such that gcd(m,n) = dm + en. Then
x = a − cdm = b + cen is the desired integer.

The attentive reader may have noted the similarities between this lemma
and lemma 3.15; the following proof likewise uses many of the same ideas as
the proof of lemma 3.16.

Recall that we may still assume {α1} ≠ 0 (see the previous section for de-
tails). By remark 4.1, it suffices to consider α where {αr} = 1

6 . Note that if
{kαr} = 1

6 , remark 3.14 implies that the number of apex points is not maximal
if {kα1} ≤ 1

2 .

Suppose gcd(γ1, γr) ∈ {1, 2}. Let β′
1 be an arbitrary integer such that

β1β
′
1 ≡ 1 mod γ1. By lemma 4.3, above, there is an integer k such that

k ≡ β′
1

k ≡ 1
mod γ1

mod γr

since either β′
1−1 ≡ 0 mod 1 or β′

1−1 ≡ 1−1 ≡ 0 mod 2. Note gcd(k, γ1γr)|
gcd(β′

1, γ1) gcd(1, γr) = 1 and {kα} = ({ 1
γ1
}, 1

6 ). Since { 1
γ1
} ≤ 1

2 for all γ1,
there are no algebraic solutions in either case.

Now suppose that gcd(γ1, γr) ∈ {3, 6}. Let β′
1 be as above, let b and c be

the largest integers such that 2b3c|γ1, and choose d ∈ {1, 2, 3, 4, 6} such that
β′

1(
γ1

2b3c + d) ≡ 1 mod gcd(γ1, γr). (It is not necessary to allow d = 5, as

14



4.3. Results for (γr, n) = (10, 3)

±1(±1 + 5) ̸≡ 1 mod 6 for any choice of signs.) By lemma 4.3, there is an
integer k such that

k ≡ β′
1(

γ1

2b3c
+ d)

k ≡ 1

mod γ1

mod γr

as β′
1(

γ1
2b3c + d) − 1 ≡ 1 − 1 ≡ 0 mod gcd(γ1, γr).

Note gcd(k, γ1γr)| gcd(β′
1, γ1) gcd( γ1

2b3c +d, γ1) gcd(1, γr) = gcd( γ1
2b3c +d, γ1).

Let us suppose that there is some prime p dividing both γ1
2b3c + d and γ1.

Clearly, either p ∈ {2, 3} or p|d, so p ∈ {2, 3}. However, γ1
2b3c + d ≡ β′

1

mod gcd(γ1, γr), so γ1
2b3c + d is coprime with gcd(γ1, γr). Note that p|γ1 if and

only if p| gcd(γ1, γr), which implies p - γ1
2b3c + d. Therefore, gcd(k, γ1γr) = 1.

Furthermore, {kα} = ({β′
1(

γ1
2b3c + d)β1

γ1
}, 1

6 ) = ({ 1
2b3c + d

γ1
}, 1

6 ). There are
no algebraic solutions if 1

2c3c + d
γ1

≤ 1
2 , which is the case at least when γ1 ≥ 36.

(Note 1
2b3c ≤ 1

3 and d ≤ 6.)
Once again, we use a computer to solve the problem, and refer the interested

reader to appendix A. For r = 2, we conclude that all solutions are algebraic
if ({α1}, {αr}, n) ∈ {( 1

6 , 5
6 , 3), ( 5

6 , 1
6 , 3), ( 1

3 , 5
6 , 3), ( 2

3 , 1
6 , 3)}. Once again, we sim-

ply fill in all possible values for ({α1}, {αr}, n) in the inequality presented in
corollary 3.11, invoke lemmas 3.16 and 3.15, and find that there are no alge-
braic solutions if 1

6 < {α2} ≤ 5
6 (we require either 1

6 < {α2} or {α2} ≤ 5
6 for

algebraicity), which is the case if γ2 > 6. As before, for r = 3, we require that
(α1, αr) leads to algebraic solutions. Furthermore, if γ1 = 6, corollary 3.11
requires either 13

18 ≤ 5
6 < {α2} or {α2} ≤ 1

6 < 5
18 ; if γ1 = 3, corollary 3.11

requires either 7
9 ≤ 5

6 < {α2} or {α2} ≤ 1
6 < 2

9 , i.e. exactly the same. In either
case, we can use the same argument as in the last section: by lemma 3.16 and
3.15, there are no algebraic solution unless γ2 ≤ 6; and if γ2 ≤ 6, we can always
find a k such that {kα2} > 1

2 , but {kα2} ≤ 5
6 for any k.

In summary, all solutions are algebraic exactly if r = 2 and ({α1}, {αr}, n) ∈
{( 1

6 , 5
6 , 3), ( 5

6 , 1
6 , 3), ( 1

3 , 5
6 , 3), ( 2

3 , 1
6 , 3)}.

4.3 Results for (γr, n) = (10, 3)

For (γr, n) = (10, 3), we can use an argument that is extremely similar to the
argument used for (γr, n) = (6, 3), above.

By the same remark 4.1, we need only consider the cases where γr ∈ { 1
10 , 3

10}
and α1 ̸= 0. Analogously to the previous case, remark 3.14 tells us that the
number of apex points is not maximal if {kαr} = {αr} and {kα1} ≤ 3

10 ≤
n{kαr} = 3{αr}.

Suppose, once again, that gcd(γ1, γr) ∈ {1, 2}. Let β′
1 be an arbitrary

integer such that β1β
′
1 ≡ 1 mod γ1. Once again, β′

1 − 1 ≡ 0 mod gcd(γ1, γr),
so we invoke lemma 4.3 and find that there is an integer k such that

k ≡ β′
1

k ≡ 1
mod γ1

mod γr
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4. Exceptions

Note gcd(k, γ1γr)| gcd(β′
1, γ1) gcd(1, γr) = 1, and {kα} = ({ 1

γ1
}, {αr}). Note

that for γ1 ̸= 2, { 1
γ1
} ≤ 3

10 ; we will consider the case γ1 = 2 below.

Now suppose gcd(γ1, γr) ∈ {5, 10}. Let β′
1 be as above; let b and c be

the largest integers such that 2b5c|γ1, and choose d ∈ {1, 2, 4, 5, 8, 10, 16} such
that β′

1(
γ1

2b5c + d) ≡ 1 mod gcd(γ1, γr). (The gentle reader is invited to create
a table of all pairs of numbers coprime with either 5 or 10 to see that these
choices suffice.) Then there is an integer k such that

k ≡ β′
1(

γ1

2b3c
+ d)

k ≡ 1

mod γ1

mod γr

as β′
1(

γ1
2b6c + d) − 1 ≡ 1 − 1 ≡ 0 mod gcd(γ1, γr).

Note gcd(k, γ1γr)| gcd( γ1
2b5c + d, γ1) = 1. After all, suppose there is a prime

p that divides both γ1
2b5c +d and γ1. Then either p ∈ {2, 5} or p|d, so p ∈ {2, 5}.

Note that, as above, p|γ1 exactly if p| gcd(γ1, γr), which implies p - γ1
2b5c + d.

Analogously to the previous case, we find {kα} = ({β′
1(

γ1
2b5c +d)β1

γ1
}, {αr}) =

({ 1
2b5c + d

γ1
}, {αr}). Note 1

2b5c ≤ 1
5 and d ≤ 16, and { 1

2b5c + d
γ1
} ≤ 3

10 ≤ 3{αr} =
n{kαr} at least if γ1 ≥ 160. Computer results (see appendix A) tell us that
there are no algebraic solutions in any of these cases, including the case γ1 = 2
noted above. (Note that the solutions for (α1, α2, αr) cannot be algebraic unless
the solutions for (α1, αr) are, so this conclusion is true for r = 2 as well as for
r = 3.)

4.4 Conclusion

Collecting all our previous results, we can conclude the following1

Conclusion. Suppose the conditions of theorem 2.4 are satisfied, that is, sup-
pose that the GKZ-system is irreducible and that the normality assumption
holds. If αr ∈ Z, all solutions are algebraic. Otherwise, suppose that (r, n1, n2,
. . . , nr−1) ̸∈ {(2, 2), (3, 1, 1), (3, 1, 2), (3, 2, 1)}. Then all solutions are alge-
braic exactly if r = 2 and ({α1}, {α2}, n1) ∈ {({α1}, {α2}, 1), ( 1

3 , 5
6 , 3), ( 2

3 , 1
6 , 3),

( 1
6 , 5

6 , 3), ( 5
6 , 1

6 , 3), ( 1
6 , 5

6 , 4), ( 5
6 , 1

6 , 4)} (where {x} = x−⌊x⌋ is the fractional part
of x).

1The proof consists of the entire thesis, but to understand the conclusion one need only
read chapter 2 (very short) and definitions 3.1 and 3.2.
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A Computer code and output

A significant part of chapter 4 is concerned solely with finding bounds on the
tuples (γ1, γr, n) for which there may be an algebraic solution. This is highly
successful: the theoretical arguments presented in that chapter give a definite
result in all but a very small number of cases. Of course, a complete analysis
also has to check for algebraicity in the (about 6000) cases that are not covered
by these arguments. Note that this program only handles r = 2; the theoretical
arguments presented in the chapter do a good job of handling r = 3 based on
the results for r = 2 obtained in this appendix.

The actual calculations were performed using the following program, writ-
ten for the Gambit-C 4.4.0 implementation of the Scheme programming lan-
guage. It should work on pretty much any Scheme implementation1, though.

The casual reader is invited to skip this whole appendix and/or run the pro-
gram in verbose mode to spot-check the calculations (change the (calculate
... #f) calls at the end to (calculate ... #t) and expect a lot of out-
put). The interested reader should at least be aware that the (cond-expand)
forms only make sure that all proper SRFIs (“libraries”) are available, by im-
porting the reference implementation if necessary, and do very little interesting
work.

(cond-expand
(gambit

; Enable various (compile-time) optimizations
(declare
(block)
(standard-bindings)
(extended-bindings)
(mostly-generic)))

(else))

(cond-expand
(srfi-1) ; (“List Library”)
(else
; Load reference implementation
(load "lib/srfi-1-reference.scm")

; Required by reference implementation
(define (check-arg pred val caller)
(let lp ((val val))
(if
(pred val)

1It is written to require only R5RS, SRFI-0 (“Feature-based conditional expansion con-
struct”) and either SRFI-28 (“Basic Format Strings”) or SRFI-6 (“Basic String Ports”), and
the latter part can be disabled if the “verbose” mode is not required.
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A. Computer code and output

val
(lp (error "Bad argument" val pred caller)))))

; Replace (iota) with a version that works with just R5RS
(define (iota count . maybe-start+step)
(let ((start (if (null? maybe-start+step)

0
(car maybe-start+step)))

(step (if (or (null? maybe-start+step)
(null? (cdr maybe-start+step)))

1
(cadr maybe-start+step))))

(check-arg number? start iota)
(check-arg number? step iota)
(let loop ((n 0) (r ’()))
(if (= n count)
(reverse r)
(loop (+ n 1) (cons (+ start (* n step)) r))))))))

If SRFI-28 (“Basic Format Strings”) is present, we can just use that. How-
ever, if that is not the case, we import the reference implementation, which
requires SRFI-6 (“Basic String Ports”) and SRFI-23 (“Error reporting mecha-
nism”). If SRFI-23 is not present, we can just import the reference implemen-
tation of SRFI-23 first; however, SRFI-6 requires implementation support, so
if the underlying system does not support it we sadly have to bail out. (As
noted before, if verbose operation is not necessary, SRFI-28 – and thus SRFI-6
– is optional.)

(cond-expand
(srfi-23
(define has-srfi-23 #t))

(else
(define has-srfi-23 #f)))

(cond-expand
(srfi-28)
(else
(cond-expand
(srfi-6))

(if (not has-srfi-23)
(load "lib/srfi-23-reference.scm")
(set! has-srfi-23 #t))

(load "lib/srfi-28-reference.scm")))

This function shows the results of a calculate call in a readable format.

(cond-expand
(gambit
(define (show x)
(if (or (not (list? x)) (not (null? x)))
(pretty-print x))))

18



(else
(define (show x)
(if (or (not (list? x)) (not (null? x)))
(begin
(write x)
(newline))))))

With the (cond-expand) forms behind us, we begin by defining the frac-
tional part ({x}).

(define (frp x)
(- x (floor x)))

The following simple procedure returns all numbers in {1, 2, . . . , n} that are
coprime with n. For instance, (coprimes 12) is (1 5 7 11). Anyone trying
to do large-scale experiments with this code will soon find that this function is
a performance bottleneck: contact the author for a memoizing version or im-
plement one yourself (SRFI-69 may be a convenient starting point). However,
the version below suffices for checking the ranges required for our proofs, and
it’s much easier to see that it’s correct.

(define (coprimes n)
(filter
(lambda (m) (= (gcd m n) 1))
(iota n 1)))

We define some helper functions to calculate the bound given in corollary
3.9. Note that the inequalities are given in a slightly different form here.

(define (lower-p1-bound k pr n)
(* (frp (* k pr)) n))

(define (upper-p1-bound k pr n)
(- (lower-p1-bound k pr n) n -1))

(define (in-bound k p1 pr n)
(or (<= (frp (* k p1)) (upper-p1-bound k pr n))

(> (frp (* k p1)) (lower-p1-bound k pr n))))

In verbose mode, the program prints human-readable representations of
the calculations being done. This representation is provided by the following
function:

(define (equation-string k p1 pr n)
(let* ((upper-bound (upper-p1-bound k pr n))

(lower-bound (lower-p1-bound k pr n))
(kp
(if (= k 1)
(format "{p_1} = ~a" (frp p1))
(format "{~a p1} = ~a" k (frp (* k p1)))))

(upper-bound-string (format "~a <= ~a" kp upper-bound))
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A. Computer code and output

(lower-bound-string (format "~a < ~a" lower-bound kp)))
(cond
((and (>= upper-bound 0)

(< lower-bound 1))
(format "~a or ~a"

upper-bound-string
lower-bound-string))

((>= upper-bound 0)
upper-bound-string)
((< lower-bound 1)
lower-bound-string)
(else
(format "~a or ~a (No sol.)"
upper-bound-string
lower-bound-string)))))

We now come to the main calculation loop. This basically considers all
possible values of βr, γ1, βr and k and verifies corollary 3.9 for each combina-
tion. If verbose is true (#t), calculate produces human-readable output; in
any case, it returns a list of (γ1, γr, n) for which all solutions are algebraic.

(define (calculate gr n g1s verbose)
(let ((result ’()))
(for-each
(lambda (br)
(for-each
(lambda (g1)
(for-each
(lambda (b1)
(let ((p1 (/ b1 g1))

(pr (/ br gr)))
(call-with-current-continuation
(lambda (break)
(for-each

(lambda (k)
(if verbose
(begin
(display
(format "(pr, n)=(~a, ~a), "

pr n))
(display
(format "p1=~a, k=~a: ~a~a"

k p1
(equation-string k
p1 pr n)

(if (in-bound k p1 pr n)
" (OK)"
"")))

(newline)))
(if (not (in-bound k p1 pr n))
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(break #f)))
(coprimes (lcm g1 gr)))

(if verbose
(begin
(display
(format "(pr, n)=(~a, ~a), p1=~a: "

pr n p1))
(display "*** All solutions are ")
(display "algebraic ***")
(newline)))

(set! ; Found triplet, store it
result
(cons (list p1 pr n) result))))))

(coprimes g1)))
g1s))

(coprimes gr))
result))

As found in section 4.1, we need only consider γ1 ≤ 4γr

2n−γr
to find all tuples

for which there may be algebraic solutions. Note 4γr

2n−γr
is 8, 12 resp. 6 for

(γr, n) = (4, 3), (6, 4) resp. (6, 5).

(show (calculate 4 3 (iota 9 1) #f))
(show (calculate 6 4 (iota 13 1) #f))
(show (calculate 6 5 (iota 7 1) #f))

This does pretty much the same for the values of γr found in section 4.2.
Note that only multiples of 3 are considered.

(show (calculate 6 3 (iota 39/3 3 3) #f))

Finally, we calculate the equivalent results for the values of γr found in
section 4.3.

(show (calculate 10 3 ’(2) #f))
(show (calculate 10 3 (iota 165/5 5 5) #f))

The above program yields the following results:

((1/6 5/6 4) (5/6 1/6 4))
((1/6 5/6 3) (1/3 5/6 3) (5/6 1/6 3) (2/3 1/6 3))
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